Product Information

PROVEBLUE®

(methylene blue solution for injection)

NAME OF THE MEDICINE

Methylene blue (also known as methylthioninium chloride)
Chemical Name: 3,7-Bis(dimethylamino)phenothiazin-5-ylium trihydrate

Chemical Structure
The molecular weight of methylene blue trihydrate is 373.9. The molecular formula of hydrated methylene blue is C$_{16}$H$_{18}$ClN$_3$S.xH$_2$O (where x=3,4 or 5) and its structure is as follows:

![Chemical structure of methylene blue]

CAS Number
CAS registry number of methylene blue trihydrate is 7220-79-3

DESCRIPTION

Methylene blue is a dark blue, crystalline powder with a copper-coloured sheen, or green crystals with a bronze-coloured sheen. It is slightly soluble in water and slightly soluble in ethanol.

PROVEBLUE® injection is a sterile solution containing 50 mg methylene blue trihydrate (equivalent to 42.77 mg of methylene blue anhydrous) in water for injections to 10 mL. The pH of the solution ranges between 3.0 and 4.5.

PHARMACOLOGY

Pharmacodynamics
In patients with methaemoglobinemia, therapeutic doses of methylene blue can lower the levels of methaemoglobin in red blood cells. It activates a normally dormant reductase enzyme system that reduces the methylene blue to leucomethylene blue, which is then able to reduce methaemoglobin to haemoglobin. However, in large doses, methylene blue can itself produce methaemoglobinaemia and the methaemoglobin concentration should therefore be closely monitored during treatment. Methylene blue is not effective for the treatment of methaemoglobinaemia in patients with glucose-6-phosphate dehydrogenase deficiency as these patients have a diminished capacity to reduce methylene blue to leucomethylene blue. It is also potentially harmful as patients with glucose-6-phosphate dehydrogenase deficiency are particularly susceptible to the haemolytic anaemia induced by methylene blue.

Methylene blue also possesses weak antiseptic and bacteriological staining properties and is reported to inhibit amine oxidase in tissues. The drug appears to bind irreversibly to viral nucleic acid and cause disruption of the virus molecule upon exposure to light.

The use of methylene blue as a diagnostic aid is based on its ability to stain tissue. Any skin discolouration can be removed with hypochlorite solution.
Pharmacokinetics

In tissues, methylene blue is rapidly reduced to leucomethylene blue, which is stabilised as an undetermined salt, complex, or combination form in the urine but not in the blood. About 75% of an oral dose of methylene blue is excreted in the urine, a small proportion of which is the unchanged drug, while some is excreted via the bile.

INDICATIONS

PROVEBLUE® is indicated:

- for the treatment of drug-induced methaemoglobinaemia
- for the treatment of idiopathic methaemoglobinaemia (in which structural abnormality of haemoglobin is not present)
- as a bacteriological stain
- as a dye in diagnostic procedures such as fistula detection
- for the delineation of certain body tissues during surgery.

CONTRAINDICATIONS

PROVEBLUE® is contraindicated in the following circumstances:

- known hypersensitivity to the drug or any other thiazide dyes
- patients with severe renal impairment
- patients with glucose-6-phosphate dehydrogenase deficiency
- methaemoglobinaemia due to chlorate poisoning
- methaemoglobinaemia during treatment of cyanide poisoning

Intrathecal and subcutaneous injection of methylene blue are also contraindicated as they can result in neural damage (intrathecal administration) and necrotic abscess (subcutaneous administration).

PRECAUTIONS

Long term administration of methylene blue may result in marked anaemia due to accelerated destruction of erythrocytes; haemoglobin concentrations should be checked frequently.

If methylene blue is injected subcutaneously or if extravasation occurs, necrotic abscesses may occur (see CONTRAINDICATIONS). Slow injection rates are recommended to prevent high local concentration of the compound.

Methylene blue imparts a blue-green colour to urine, faeces and a blue colour to skin which may hinder a diagnosis of cyanosis.

Caution should be exercised in the course of treating aniline-induced methaemoglobinaemia. The repeated doses, that may be required, may exacerbate Heinz body formation and haemolytic anaemia. Lower doses should be considered.

Exacerbation of dapsone-induced haemolytic anaemia has been reported as a result of the formation of the dapsone reactive metabolite hydroxylamine which oxidises haemoglobin. It is recommended not to exceed a cumulative dose for the course of treatment of 4 mg/kg in patients with dapsone-induced methaemoglobinaemia.

Anaesthesiologists should be vigilant for methaemoglobinaemia in patients receiving dapsone therapy and for BIS (Bispectral Index) interference.

Due to the potential risk of cardiac arrhythmia and hypotension, electrocardiographs (ECG) and blood pressure monitoring is recommended.
Failure to respond to methylene blue suggests cytochrome b₅ reductase deficiency, glucose-6-phosphate dehydrogenase deficiency or sulfhaemoglobinemia. Alternative treatment options should be considered.

Patients with hyperglycaemia or diabetes mellitus: if diluted in glucose 5% (50 mg/mL) solution for injection, Methylene Blue Injection must be used with caution in patients with hyperglycaemia or diabetes mellitus, as these conditions may be exacerbated by the glucose solution.

Patient monitoring

Full blood count, including reticulocyte count should be undertaken to ensure haemolysis has not occurred. Electrocardiograph (ECG) and blood pressure should be monitored during and after treatment with methylene blue as hypotension and cardiac arrhythmia are potential adverse effects.

Long term administration of methylene blue may result in anaemia. Haemoglobin levels should be monitored during long term therapy.

Methaemoglobin levels should be monitored throughout therapy.

Methylene blue is a potent monoamine oxidase inhibitor:

Methylene blue has recently been demonstrated to be a potent monoamine oxidase inhibitor (MAOI) and may cause potentially fatal serotonin toxicity (serotonin syndrome) when combined with serotonin reuptake inhibitors (SRIs).(1) If methylene blue is judged to be indicated SRIs must be ceased, prior to treatment/procedure/surgery (See INTERACTIONS WITH OTHER MEDICINES).

Effects on Fertility

In vitro methylene blue has been shown to reduce motility of human sperm. It has also been shown to inhibit the growth of cultured two-cell mouse embryos and the production of progesterone in cultured human luteal cells. *In vivo* effects on fertility and reproduction are not known.

Use in Pregnancy

Methylene Blue Injection caused ileal abnormalities including foetal intestinal atresia.

Category D. PROVEBLUE® should not be administered to pregnant women.

Category D, Australian definition: Drugs which have caused, are suspected to have caused, or may be expected to cause, an increased incidence of human foetal malformations or irreversible damage. These drugs may also have adverse pharmacological effects. Accompanying references should be consulted for further details.

Use in Lactation

There is no information on whether or not methylene blue crosses into breast milk. Safety in the newborn has not been established, and hence, it is recommended that breastfeeding is discontinued prior to administration of PROVEBLUE®.

Paediatric use

Safety and efficacy of methylene blue in infants have not been established. It has been reported that the metabolism of methylene blue to leucomethylene blue is likely to be less efficient in neonates, due to reduced efficiency of NADPH-diaphorase in this age group. The use of methylene blue in infants up to 4 months of age is not recommended.

Extreme caution should be exercised when administering to the newborns and infants below the age of 3 months due to lower concentrations of NADPH-methaemoglobin reductase necessary for reducing methaemoglobin to haemoglobin, making these infants more susceptible to methaemoglobinaemia produced by high doses of methylene blue.
Genotoxicity
Methylene blue was positive to gene mutation assays in bacteria and mouse lymphoma cells, but was negative in the in vivo mouse micronucleus test.

Carcinogenicity
There is no information on the carcinogenic potential of methylene blue.

Effect on laboratory tests
Phenolsulphthalein excretion test: methylene blue may cause false positive test results.
Pulse oximetry: methylene blue may result in an underestimation of the oxygen saturation reading. It is advisable to check the oxygen saturation by cooximetry when available since pulse oximetry may provide a false estimation of oxygen saturation during administration of methylene blue.
Bispectral Index (BIS): methylene blue may interfere with BIS values.

Use in renally impaired patients
Methylene blue is excreted mainly via the urine, primarily as leucomethylene blue. Methylene blue is contraindicated in patients with severe renal impairment. Caution should be exercised when administering methylene blue to patients with mild to moderate renal impairment.

Effects on ability to drive and use machines
Driving can be affected due to confusional state, dizziness and possibly eye disturbances. However, the risk is limited as the medical product is intended for acute administration only in emergency situations at hospital.

INTERACTIONS WITH OTHER MEDICINES
An in vitro study showed that methylene blue is a potential inhibitor of CYP450 1A2, 2B6, 2C9 and 2C19. The clinical relevance of this finding is unknown but it cannot be excluded that the systemic exposure of medical products being substrates for these isozymes may be increased on concomitant administration with methylene blue.

Serotonin reuptake inhibitor
Methylene blue may interact with any drug that acts as a serotonin reuptake inhibitor (SRI) including, amongst others, selective serotonin reuptake inhibits (SSRIs) such as fluvoxamine, fluoxetine, paroxetine, sertraline, escitalopram and citalopram, and serotonin and noradrenaline reuptake inhibitors (SNRIs) like clomipramine, venlafaxine, duloxetine and sibutramine; such combinations have the consequence of potentially fatal serotonin toxicity (serotonin syndrome). Methylene blue should not be coadministered with any drug that acts an SRI. (See PRECAUTIONS)

Serotonin Syndrome
Spontaneous reports of serotonin syndrome associated with the co-administration of methylene blue and serotonergic agents, including antidepressants such as selective serotonin reuptake inhibitors (SSRIs) have been reported. Coadministration of methylene blue and serotonergic agents is therefore not recommended except where administration of methylene blue and concomitant serotonergic agents is essential. In those cases the lowest possible dose should be used and patients should be closely observed for signs and symptoms of serotonin syndrome such as cognitive dysfunction, hyperpyrexia, hyperreflexia, clonus and incoordination. If signs or symptoms occur physicians should consider discontinuing either one or both agents; if the concomitant serotonergic agent is withdrawn, discontinuation symptoms can occur.
Incompatibilities
Precipitation has been reported in cases where methylene blue has been diluted with sodium chloride 0.9%, saline (due to presence of chloride ions which have been shown to reduce the solubility of methylene blue).

Methylene blue is reported to be incompatible with caustic alkalis, iodides and dichromates, and oxidising and reducing substances.

ADVERSE EFFECTS
The adverse effects listed in the table below occur in adults, children and adolescents (age 0 to 17 years old) after intravenous administration.

<table>
<thead>
<tr>
<th>System Organ Class</th>
<th>Adverse reactions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gastrointestinal</td>
<td>nausea, vomiting, diarrhoea, abdominal pain, blue colour of faeces and saliva</td>
</tr>
<tr>
<td>Haematologic</td>
<td>haemolysis (in glucose-6-phosphate dehydrogenase deficiency, or high doses), methaemoglobinemia (after high doses), hyperbilirubinemia.</td>
</tr>
<tr>
<td>Cardiovascular</td>
<td>hypertension, hypotension*, arrhythmia*, chest pain, tachycardia</td>
</tr>
<tr>
<td>Respiratory, thoracic and mediastinal disorders</td>
<td>Dyspnoea, tachypnoea, hypoxia</td>
</tr>
<tr>
<td>Body as a whole</td>
<td>profuse sweating</td>
</tr>
<tr>
<td>Dermal</td>
<td>rash (blue macules, severe burning pain), skin discolouration (blue), urticaria</td>
</tr>
<tr>
<td>Nervous system</td>
<td>headache, dizziness, anxiety, tremor, fever, aphasia</td>
</tr>
<tr>
<td>Psychiatric disorders</td>
<td>Mental confusion, agitation</td>
</tr>
<tr>
<td>Injection site</td>
<td>thrombophlebitis (resulting from high doses, if not adequately diluted — not more 350 mg of methylene blue should be diluted in each 500 mL of infusion fluid), necrosis (if extravasation occurs)</td>
</tr>
<tr>
<td>Renal</td>
<td>blue colour of urine</td>
</tr>
<tr>
<td>Immune system disorders</td>
<td>anaphylactic reactions</td>
</tr>
<tr>
<td>Ocular disorders</td>
<td>mydriasis</td>
</tr>
<tr>
<td>Investigational</td>
<td>haemoglobin decrease</td>
</tr>
</tbody>
</table>

*might prove fatal on rare occasions
Oral administration may cause gastrointestinal disturbances and dysuria. Use of methylene blue for endoscopic tattoo has been associated with vascular necrosis, mucosal ulceration, mural necrosis, extramural fat necrosis and inflammatory changes in the colon.

Injection of methylene blue into joint space has resulted in effusion in the treated joint. Hyperbilirubinaemia has been reported in infants only.

DOSAGE AND ADMINISTRATION

PROVEBLUE® may be administered orally or by intravenous (IV) injection.

In the treatment of acute methaemoglobinaemia, the IV route of administration is usually preferred because it provides a more rapid onset of effect.

Adults and children: In the treatment of methaemoglobinaemia, methylene blue is administered intravenously as the 0.5 % solution in doses of 1 to 2 mg per kg bodyweight injected over a period of 5 minutes. A repeat dose may be given after one hour if required. A maximum dose of 7mg/kg bodyweight is recommended. The use of methylene blue is not recommended in infants under 4 months of age.

A dose of 5 mg/kg diluted in 500 mL of glucose 5% infused over 1 hour has been used successfully to stain and identify the parathyroid glands.

PROVEBLUE® should not be diluted with sodium chloride 0.9% (saline) as precipitation may occur (due to presence of chloride ions which have been shown to reduce the solubility of methylene blue).

A suitable dilution for oral dosing would be 10-20 mL of the 0.5 % solution diluted to 100-200 mL with water for injections. The high volume is suggested to reduce the degree of gastrointestinal disturbances and dysuria. The dosage of methylene blue should be calculated on the basis of lean body weight.

Use immediately following dilution.

The PROVEBLUE® ampoules should be inspected visually prior to administration. The product should not be used if the solution is discoloured, cloudy, turbid or if a precipitate or particles are present.

Each ampoule is for single use in one patient only. Discard any residue. PROVEBLUE® contains no antimicrobial agents.

OVERDOSAGE

Symptoms: No specific information is available. However, large doses of methylene blue can produce methaemoglobinaemia. Side effects seen with high doses include chest pain, dyspnoea, restlessness, apprehension, tremors and a sense of oppression. Large doses are irritant to the urinary tract. In addition it can produce a mild haemolysis with moderate hyperbilirubinaemia, reticulosis and slight anaemia. Rarely, however, severe haemolytic anaemia with Heinz body formation has resulted. Methylene blue in large doses could cause a blue discolouration of the skin after methaemoglobin levels have returned to normal.

Individuals with methaemoglobinaemia

Cumulative doses of methylene blue may lead to dyspnoea and tachypnoea, presumably related to reduced oxygen availability caused by methaemoglobinemia, chest pain, tremor, cyanosis and haemolytic anaemia. Haemolytic anaemia has also been reported in case of severe overdose (20-30 mg/kg) in infants and adults with methaemoglobinaemia caused by aniline or chlorates. Haemodialysis may be used in patients with severe haemolysis.

Individuals without methaemoglobinaemia

The administration of large intravenous doses (≥ 7 mg/kg) of methylene blue to individuals without methaemoglobinaemia induces nausea and vomiting, chest tightness, chest pain, tachycardia, apprehension, severe sweating, tremor, mydriasis, blue-green staining of the urine, blue staining of the skin.
and mucous membranes, abdominal pain, dizziness, paraesthesia, headache, confusion, hypertension, mild methaemoglobinaemia (up to 7%) and electrocardiogram changes (T wave flattening or inversion). These features resolve generally within 2-12 hours of the injection.

Paediatric population

Hyperbilirubinaemia has been observed in infants after administration of 20 mg/kg methylene blue. Death occurred in 2 infants after administration of 20 mg/kg methylene blue. Both infants had complex medical circumstances and methylene blue was only partially responsible.

Treatment of Overdosage: There is no specific antidote for methylene blue overdose. Treatment is symptomatic and supportive. In severe and refractory cases of methaemoglobinaemia, blood transfusions and even exchange transfusions and (possibly) hyperbaric oxygen may be the only alternative available.

Contact the Poisons Information Centre: Australia 13 11 26 or New Zealand 0800 POISON or 0800 764766 for further advice on overdose management.

PRESENTATION AND STORAGE CONDITIONS

PROVEBLUE® is a clear blue solution and contains methylene blue trihydrate 50 mg/10 mL in a 10mL clear glass ampoule. It is presented as a pack of 5 ampoules.

Store below 25°C. Protect from light. Do not refrigerate or freeze.

POISONS SCHEDULE

Schedule 4 - Prescription only medicine

NAME AND ADDRESS OF THE SPONSOR

Clinect Pty Ltd,
120-132 Atlantic Drive,
Keysborough, VIC 3173,
Australia

Free Call Australia: 1800 899 005

Free Call New Zealand: 0800 138 803

DATE OF FIRST INCLUSION IN THE AUSTRALIAN REGISTER OF THERAPEUTIC GOODS (ARTG)

23 July 2015

DATE OF MOST RECENT AMENDMENT

3 November 2016